Влияние факторов внешней среды на жизнедеятельность микроорганизмов

Существует определенный параллелизм между жизнедеятельностью микроорганизмов и факторами окружающей среды. Чем благоприятнее эти условия для данного микроорганизма, тем интенсивнее он развивается и тем выше темп его жизнедеятельности. Связь микроорганизмов с окружающей средой проявляется в течение всего периода индивидуального развития, причем она имеет многосторонний характер. При ассимиляции питательных веществ микроорганизм растет, развивается и выделяет в окружающую среду определенные продукты обмена. На изменение условий питания он отвечает приспособительной перестройкой своего обмена веществ. При изменении реакции среды, температуры, концентрации питательных веществ, давления, радиации и т. д. нарушается обмен веществ, прекращаются или ограничиваются рост и размножение микроорганизма. Иными словами, происходят все те морфологические и физиологические изменения, которые объединяются в понятие жизнедеятельность.

Обмен веществ у микроорганизмов не сводится только к построению веществ тела, к размножению. Одновременно осуществляются различные процессы, приводящие к улучшению самими микроорганизмами условий внешней среды для дальнейшего размножения. Естественно, ни влажность, ни температура не зависят от микроорганизма. К ним он может только пассивно приспосабливаться. Микроорганизмы могут приспосабливаться к своим потребностям и активно изменять при помощи ферментных систем химические условия. Например подщелачивание среды автоматически активирует ферменты, способные вызывать кислотообразование, интенсивная аэрация вызывает образование защитных восстановительных соединений, снижающих окислительно-восстановительный потенциал rH2.

Все факторы внешней среды, оказывающие большое влияние на развитие микроорганизмов, можно разделить на три основные группы: физические, химические и биологические. Из физических факторов наиболее важное значение имеют влажность, концентрация веществ, температура, радиация, свет; из химических - реакция среды и окислительно-восстановительные условия в ней; из биологических - антимикробные вещества. Необходимо помнить, что существует тесная взаимосвязь между многими факторами окружающей среды и что изменение одного из них часто меняет реакцию микроорганизма на действие других факторов.

Физические факторы

Влажность. В клетках микроорганизмов протекает множество различных биохимических процессов. Одни сложные вещества разлагаются, другие образуются из более простых соединений. Вода же является той необходимой средой, в которой только и могут осуществляться все эти химические реакции. Микробная клетка на 65-85 % состоит из воды, и вся ее жизнедеятельность связана с наличием влаги (табл. 1.1).

Содержание воды в некоторых микроорганизмах

Без предварительного растворения в воде многие питательные вещества не могут проникнуть внутрь микробной клетки, и жизнь ее становится невозможной. Большое влияние оказывает наличие влаги на микробные клетки, находящиеся в стадии роста, хотя между ними и в этом отношении наблюдаются значительные различия. Микроскопические грибы могут расти и на твердых питательных субстратах с минимальным содержанием воды. Микроорганизмы в природе находятся в непрерывно изменяющихся условиях, сильно колеблется и содержание влаги. Многие представители хорошо приспособились к высушиванию. Например, некоторые бесспоровые бактерии переносят высушивание и остаются жизнеспособными иногда в течение нескольких лет. Особенно хорошо приспособились к высушиванию споры различных грибов и бактерий. Споры, находящиеся в течение многих лет в сухом месте, при увлажнении начинают прорастать. Однако, как бы стойки ни были вегетативные клетки микроорганизмов к высушиванию, в высушенном состоянии они остаются бездеятельными, так как отсутствие влаги препятствует процессам их питания, а следовательно, росту и размножению. В этом состоянии, что особенно важно, они только сохраняются, хотя их жизнедеятельность заметно приостанавливается.

Концентрация веществ. На рост и жизнедеятельность микроорганизмов большое влияние оказывает концентрация различных веществ. Высокие концентрации любых веществ, в том числе питательных, создают высокое осмотическое давление во внешней среде, превышающее внутреннее осмотическое давление в клетке. Вода при этом выходит наружу, клетки обезвоживаются и начинается плазмолиз. Из-за невозможности поступления в микробную клетку питательных веществ прекращается нормальный обмен с внешней средой. Благодаря тому что цитоплазматическая мембрана имеет высокую избирательную проницаемость, клетки приспосабливаются к изменению осмотического давления в окружающей среде. В этих условиях может иметь место даже накопление в цитоплазме или минеральных солей (если они могут проникать в клетку), или осмотически активных веществ, образующихся в результате гидролиза резервных веществ цитоплазмы.

В последнем случае можно говорить даже об определенной способности к осморегуляции.

Концентрация минеральных солей, необходимая для нормального роста микроорганизмов

Концентрация питательного вещества должна быть оптимальной, т. е. достаточной для обеспечения максимального роста. Для различных веществ оптимальные концентрации различны. Так, минеральные соли, содержащие Р, S, Са, Mg, Zn, Na и другие элементы, требуются в небольших количествах. Концентрации минеральных солей, необходимые для нормального роста различных микроорганизмов, приведены в табл. 1.2. Концентрация в среде источников углерода (углеводы, кислоты, спирты, углеводороды и др.), которые чаще всего одновременно являются и источниками энергии, т. е. окисляемыми или сбраживаемыми веществами, может изменяться от десятых долей процента до 15-20%. Абсолютное содержание источника углерода для обеспечения нормальной жизнедеятельности микроорганизма и получения необходимого количества метаболита рассчитывают, используя экспериментально установленные экономические коэффициенты выхода.

Зависимость накопления микроорганизмов от температуры культивирования

Температура. Жизнь и размножение микроорганизмов зависят от многих физических факторов. Наиболее существенным фактором является прежде всего температура окружающей среды. Как и все факторы внешней среды, температурная зависимость характеризуется тремя кардинальными точками (минимум, оптимум, максимум), которые различны для отдельных микроорганизмов (табл. 1.3). Все микроорганизмы по их отношению к температуре делят на три основные группы: психрофилы, мезофилы и термофилы (рис. 1.6).

Кардинальные точки температуры для некоторых микроорганизмов

Температурный оптимум психрофилов находится в пределах 0-15 °С. Сюда относятся преимущественно представители микрофлоры северных морей. Для психрофилов характерна небольшая скорость роста. Ко второй группе относится большинство используемых в промышленности бактериальных и грибных культур микроорганизмов, температурный оптимум развития которых находится в пределах 25-37 °С. К термофильным микроорганизмам относятся формы, температурный оптимум которых 50-60 °С, крайние пределы 30-70 °С. Термофильные микроорганизмы представляют особый интерес для промышленного использования, так как культивирование их при высоких температурах создает селективные условия и позволяет снизить требования к стерильности процесса.

Высокие и низкие температуры неодинаково влияют на микроорганизмы. Наиболее губительны для них высокие температуры, вызывающие коагуляцию белков клетки и нарушение активности ферментов. При повышении температурного максимума жизнедеятельность микроорганизмов резко снижается. Так, гибель бесспоровых бактерий при температуре 60 °С наступает через 30 мин, при 70 °С - через 10-15 мин, а при 80-100° - через 1 мин. Изменение температуры в сторону минимума сказывается менее резко, чем повышение в сторону максимума. Например, количество биомассы Asp. niger снижается в десятки, сотни раз при повышении температуры от минимума 35 °С на 7°С, в то время как при понижении температуры на 15 °С от оптимума количество биомассы уменьшается только в 8-10 раз. На губительном влиянии высоких температур основаны приемы уничтожения микробов - пастеризация и стерилизация. При пастеризации погибают вегетативные клетки, но остаются жизнеспособными споры. При стерилизации происходит полное уничтожение всех жизнеспособных клеток и их спор. Низкие температуры хорошо переносятся микроорганизмами. Некоторые бактерии могут переносить температуру -190°С (температура жидкого воздуха) и даже температуру жидкого водорода -252 °С. При замораживании наибольшую опасность представляет не сама низкая температура, а мелкие кристаллы льда, образующиеся внутри клетки, которые могут ее повредить механически.

Свет. На развитие микроорганизмов большое влияние оказывают солнечный свет и другие формы лучистой энергии. Наиболее сильным действием обладает коротковолновая ультрафиолетовая часть спектра (200-300 нм) с ярко выраженным фотохимическим эффектом. Большой активностью обладают также рентгеновские лучи (ионизирующее излучение с длиной волны 0,005-1 нм), y-лучи (коротковолновые рентгеновские лучи), а-, B-частицы, нейтроны. Действие всех этих форм лучистой энергии на микроорганизмы зависит от дозы, а также от физиолого-биохимического состояния микроорганизма. Есть все основания полагать, что действие различного рода излучений связано в первую очередь с изменением структуры ДНК. Во многих случаях спектр действия УФ-лучей соответствует спектру их поглощения нуклеиновыми кислотами. При изучении механизма действия УФ-лучей на молекулярном уровне было обнаружено, что при денатурации ДНК, облученной высокими дозами УФ-лучей (порядка 1*10-2 Дж), возникают разрывы между нуклеотидами, а также образование поперечных сшивок между комплементарными нитями молекулы ДНК.

Действие рентгеновских лучей также связано с ДНК. Наблюдения показали, что рентгеновские лучи, а также некоторые продукты, возникающие под их действием (Н+ и ОН-, радикалы, перекиси), разрушают ДНК.

Следует отметить, что на влиянии различного рода излучений на микроорганизмы основаны приемы стерилизации воды и некоторых других продуктов.

Давление. Микроорганизмы устойчивы к давлению в 500 и даже 1000 кПа, что, по-видимому, связано с малой чувствительностью белков к его денатурирующему влиянию. Для большинства микроорганизмов давление 100 МПа приводит к летальному исходу.

Химические факторы

Концентрация ионов водорода. Большое влияние на развитие микроорганизмов оказывает такой химический фактор внешней среды, как концентрация ионов водорода или pH. Каждый микроорганизм имеет свой максимум и минимум pH, в пределах которых он может развиваться (табл. 1.4).

Значения pH среды для некоторых микроорганизмов

Как свидетельствуют данные таблицы, есть и некоторые общие закономерности. Бактериальные микроорганизмы хорошо развиваются при pH, близком к нейтральному - от 6,5 до 7,5. У микроскопических грибов и различных видов дрожжей оптимум pH в кислой зоне - от 4 до 6. Концентрация водородных ионов в среде оказывает большое влияние на развитие микроорганизмов и на их физиологическую активность. Это положение можно подтвердить ходом процесса брожения. Например, при спиртовом брожении, протекающем при pH 4, образуются диоксид углерода и этиловый спирт. При сдвиге pH в щелочную сторону (до 7,5) брожение также происходит, но в этом случае кроме диоксида углерода и спирта образуется еще и уксусная кислота.

Окислительно-восстановительный потенциал. Выражают через rH2. Если pH выражает степень кислотности и щелочности, то rH2 - степень аэробности. И. Л. Работнова (1958) показала, что в водном растворе, насыщенном кислородом, rH2 = 41, а в условиях насыщения водородом - rH2 = 0. Шкала от 0 до 41 характеризует любую степень аэробности. По отношению к этому фактору внешней среды все микроорганизмы подразделяются на следующие основные группы: аэробы, анаэробы и факультативные анаэробы. Аэробы содержат в своих клетках систему дыхательных ферментов и в качестве акцепторов водорода при окислительно-восстановительных процессах используют молекулярный кислород. Для аэробных микроорганизмов, например для дрожжей, rH2= 10 / 30 (рис. 1.7, а). Анаэробы получают энергию без участия кислорода воздуха за счет сопряженного окисления - восстановления веществ субстрата. Эти микроорганизмы жизнедеятельны при rH2 не выше 20. Рис. 1.7, б свидетельствует, что размножаются анаэробы только при крайне низких значениях rH2 - не выше 3-5. Для представителей этой группы микроорганизмов молекулярный кислород не только не нужен, но в ряде случаев и ядовит.

Кривые размножения и изменения rH2 для культуры аэробов и анаэробов

Микроорганизмы, для которых кислород не обязателен, так как они живут за счет сопряженного окисления-восстановления без вовлечения кислорода, называются факультативными анаэробами. Они живут в широком диапазоне rH2 - от 0 до 30. Кислород для них не ядовит или слабо ядовит.

Биологические факторы (антимикробные вещества)

Различные вещества, находящиеся в окружающей среде, могут служить источником питания микроорганизмов и способствовать росту и развитию, а могут и ингибировать рост микробной клетки, не оказывая на нее летального действия. Наиболее известными антимикробными веществами являются антибиотики, которые даже в небольших концентрациях угнетают рост и активность микробов. Антибиотики образуют главным образом актиномицеты, а также некоторые грибы и бактерии. Механизм действия антибиотиков состоит в том, что одни из них нарушают процессы деления бактериальной клетки, другие изменяют отдельные процессы метаболизма, мешают использованию витаминов, конкурируют с отдельными ферментами, нарушают процессы дыхания, способствуют образованию перекисей, лизису клеток, оказывают депрессирующее действие на поверхностное натяжение и т. д.